首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Calculated volume and energy profiles for water exchange on t2g6 rhodium(III) and iridium(III) hexaaquaions: conclusive evidence for an Ia mechanism
Authors:De Vito David  Weber Jacques  Merbach André E
Institution:Département de Chimie Physique, Université de Genève, 30 Quai Ernest Ansermet, CH-1211 Geneva, Switzerland.
Abstract:An I(a) mechanism was assigned for water exchange on the hexaaquaions Rh(OH(2))(6)(3+) and Ir(OH(2))(6)(3+) on the basis of negative Delta V(++) experimental values (-4.2 and -5.7 cm(3) mol(-1), respectively). The use of Delta V(++) as a mechanistic criterion was open to debate primarily because Delta V(++) could be affected by extension or compression of the nonparticipating ligand bond lengths on going to the transition state of an exchange process. In this paper, volume and energy profiles for two distinct water exchange mechanisms (D and I(a)) have been computed using quantum chemical calculations which include hydration effects. The activation energy for Ir(OH(2))(6)(3+) is 32.2 kJ mol(-1) in favor of the I(a) mechanism (127.9 kJ mol(-1)), as opposed to a D pathway; the value for the I(a) mechanism being close to Delta H(++) and Delta G(++) experimental values (130.5 kJ mol(-1) and 129.9 kJ mol(-1) at 298 K, respectively). Volumes of activation, computed using Connolly surfaces and for the I(a) pathway (DeltaV(++)(calc) = -3.9 and -3.5 cm(3) mol(-1), respectively, for Rh(3+) and Ir(3+)), are in agreement with the experimental values. Further, it is demonstrated for both mechanisms that the contribution to the volume of activation due to the changes in bond lengths between Ir(III) and the spectator water molecules is negligible: -1.8 for the D, and -0.9 cm(3) mol(-1) for I(a) mechanism. This finding clarifies the debate about the interpretation of Delta V(++) and unequivocally confirms the occurrence of an I(a) mechanism with retention of configuration and a small a character for both Rh(III) and Ir(III) hexaaquaions.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号