首页 | 本学科首页   官方微博 | 高级检索  
     检索      

MnO2/H-TiO2纳米异质阵列的调控制备及超电容特性
引用本文:徐娟,刘家琴,李靖巍,王岩,吕珺,吴玉程.MnO2/H-TiO2纳米异质阵列的调控制备及超电容特性[J].物理化学学报,2016,32(10):2545-2554.
作者姓名:徐娟  刘家琴  李靖巍  王岩  吕珺  吴玉程
作者单位:1 合肥工业大学化学与化工学院,合肥2300092 合肥工业大学工业与装备技术研究院,合肥2300093 先进功能材料与器件安徽省重点实验室,合肥2300094 合肥工业大学材料科学与工程学院,合肥230009
基金项目:The project was supported by the National Natural Science Foundation of China(51402078);Natural Science Foundation of Anhui Province, China(1408085QE85);and Young Scholar Enhancement Foundation (Plan B) of HFUT, China(JZ2016HGTB0711)
摘    要:采用目标调控的阳极氧化工艺制备了超大比表面、管与管相互分离的有序TiO2纳米管阵列(TiO2 NTAs)基体,进而分别采用电化学氢化法和循环浸渍沉积法对晶化退火后的TiO2 NTAs实施电化学氢化和高比电容MnO2沉积的双重功能化改性,调控构筑了一种新型MnO2/H-TiO2纳米异质阵列电极材料。利用场发射扫描电子显微镜(FESEM)、高分辨透射电子显微镜(TRTEM)、X射线衍射仪(XRD)、X光电子能谱仪(XPS)、拉曼光谱(Raman)和电化学工作站等对样品进行综合表征与超电容特性测试,结果表明:电化学氢化改性有效提高了H-TiO2 NTAs的导电性和电化学特性,当电流密度为0.2 mA·cm-2时H-TiO2 NTAs的面积电容达到7.5 mF·cm-2,是相同电流密度下TiO2 NTAs的75倍;经过2个浸渍循环所获得的MnO2/H-TiO2 NTAs-2样品在电流密度为3 mA·mg-1时比电容可达481.26 F·g-1,电流密度为5 mA·mg-1时循环充放电1000圈后比电容仅下降约11%。

关 键 词:TiO2纳米管阵列  氢化  MnO2  电化学  超电容特性  
收稿时间:2016-04-12

Controlled Synthesis and Supercapacitive Performance of Heterostructured MnO2/H-TiO2 Nanotube Arrays
Juan XU,Jia-Qin LIU,Jing-Wei LI,Yan WANG,Jun Lü,Yu-Cheng WU.Controlled Synthesis and Supercapacitive Performance of Heterostructured MnO2/H-TiO2 Nanotube Arrays[J].Acta Physico-Chimica Sinica,2016,32(10):2545-2554.
Authors:Juan XU  Jia-Qin LIU  Jing-Wei LI  Yan WANG  Jun Lü  Yu-Cheng WU
Institution:1. School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, P. R. China;2. Institute of Industry & Equipment Technology, Hefei University of Technology, Hefei 230009, P. R. China;3. Key Laboratory of Advanced Functional Materials and Devices, Hefei 230009, P. R. China;4. School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, P. R. China
Abstract:This study used the target-controlled anodizing process for the controllable fabrication of TiO2 nanotube arrays (TiO2 NTAs) film substrate with large specific surface area and well-separated nanotubes. After annealing crystallization, TiO2 NTAs were successively functional modified by electrochemical hydrogenation and sequential chemical bath deposition of high specific capacitance MnO2 nanoparticles onto both the outer and inner surfaces of the nanotubes, thus constructing the heterostructured MnO2/H-TiO2 NTAs electrode. The as-prepared samples were fully characterized by field emission scanning electron microscopy (FESEM), highresolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy. The supercapacitive performance and stability of the resulting samples were systematically evaluated using electrochemical workstation. The results from the current study revealed that conductivity and electrochemical properties of H-TiO2 NTAs were dramatically enhanced through electrochemical hydrogenation and the specific capacitance of H-TiO2 NTAs could achieve 7.5 mF·cm-2 at current density of 0.2 mA·cm-2, which is almost 75 times the performance of TiO2 NTAs (0.1 mF·cm-2). Furthermore, the specific capacitance of MnO2/H-TiO2 NTAs-2 could achieve 481.26 F·g-1 at a current density of 3 mA·mg-1 as well as outstanding long-term cycling stability with only 11% reduction of initial specific capacitance at a current density of 5 mA·mg-1 after 1000 cycles.
Keywords:TiO2 nanotube array  Hydrogenation  MnO2  Electrochemistry  Supercapacitive performance  
点击此处可从《物理化学学报》浏览原始摘要信息
点击此处可从《物理化学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号