首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Gelatin-based protonic electrolyte for electrochromic windows
Authors:Amal Al-Kahlout  Diogo Vieira  César O Avellaneda  Edson R Leite  Michel A Aegerter and Agnieszka Pawlicka
Institution:1.Institut für Neue Materialien,Saarbrücken,Germany;2.IQSC,Universidade de S?o Paulo,S?o Carlos,Brazil;3.LIEC–DQ,Universidade Federal de S?o Carlos,S?o Carlos,Brazil;4.Bottens,Switzerland
Abstract:Proton-conducting gel polymer electrolytes based on gelatin plasticized with glycerol and containing acetic acid were investigated, characterized, and applied to electrochromic window. For glycerol contents varying from 7% to 48%, the conductivity of the uniform and predominantly amorphous gel electrolyte was found to follow a Vogel–Tamman–Fulcher behavior with the temperature. Typically, for the electrolyte chosen to make 7 × 2 cm2 electrochromic smart window with the configuration: glass/fluor-doped tin oxide (FTO)/WO3/gelatin electrolyte/CeO2–TiO2/FTO/glass and containing 28% of glycerol, the conductivities were found to be of the order of 5 × 10−5 S/cm at room temperature and 3.6 × 10−4 S/cm at 80 °C. The device was characterized by spectroelectrochemical techniques and was tested up to 10,000 cycles showing a fast coloring/bleaching behavior, where the coloring process was achieved in 10 s and the bleaching in 2 s. The transmission variation at the wavelength of 550 nm was about 15%. The cyclic voltammograms showed a very good reversibility of the cathodic/anodic processes, and the charge density was about 3.5 mC/cm2. The memory tests showed that the transmittance in the colored state increased by 8% in 90 min after removing the potential.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号