首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Using discrete optimization algorithms to find minimum energy configurations of slender cantilever beams with non-convex energy functions
Authors:Krishna R Narayanan  Arun R Srinivasa  
Institution:aDepartment of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA;bDepartment of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA
Abstract:This paper deals with a new solution technique for approximately solving certain variational problems in elasticity by using discrete optimization techniques that were originally used in information theory. This allows us to easily and approximately solve large deformation buckling problems for slender cantilever beams (including post-buckling behavior) as well as problems where the strain energy function is non-convex.The core idea is to quantize or discretize the variables describing the possible configurations of the body. This, when combined with the fact that the variational problem has an inherent Markov structure allows us to use computationally efficient search techniques based on dynamic programming (equivalent to finding the shortest path in a weighted directed graph) to find optimal solutions within the quantized state space. The results can be used in two ways: (1) directly as a fast approximate solution to the variational problem (2) As a means for finding very good (nearly minimum energy) initial configurations for application of conventional minimization techniques, which might otherwise fail because of a poor starting configurations which are far from the global minimum. We demonstrate both these uses in the paper.
Keywords:Variational problems  Direct minimization  Cantilever beams  Non-convex energy function  Discrete optimization  Viterbi algorithm  Buckling
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号