基于深度学习的船舶辐射噪声识别研究 |
| |
引用本文: | 朱可卿,田杰,黄海宁,张扬帆. 基于深度学习的船舶辐射噪声识别研究[J]. 应用声学, 2018, 37(2): 238-245 |
| |
作者姓名: | 朱可卿 田杰 黄海宁 张扬帆 |
| |
作者单位: | 中国科学院声学研究所,中国科学院声学研究所,中国科学院声学研究所,中国科学院声学研究所 |
| |
摘 要: | 为了改善船舶辐射噪声识别系统的性能,进一步提高船舶辐射噪声识别的正确率,该文提出采用一种基于深度学习的船舶辐射噪声识别方法。该方法首先提取了船舶辐射噪声的频谱、梅尔倒谱系数等特征,将提取特征后的图像样本分别用于训练卷积神经网络和深度置信网络,再对船舶辐射噪声进行识别。通过文中所给实例,将深度学习和支持向量机两种识别方法的性能进行比较,得出深度学习方法可以有效地提高船舶辐射噪声识别正确率的初步结论。
|
关 键 词: | 深度学习,卷积神经网络,深度置信网络,船舶辐射噪声识别 |
收稿时间: | 2017-04-14 |
修稿时间: | 2018-02-11 |
Ship-radiated noise recognition research based deep learning |
| |
Affiliation: | Institute of Acoustics, Chinese Academy of Sciences,Institute of Acoustics, Chinese Academy of Sciences,Institute of Acoustics, Chinese Academy of Sciences and Institute of Acoustics, Chinese Academy of Sciences, |
| |
Abstract: | In order to improve the accuracy and the performance of ship-radiated noise recognition system, this paper introduce a method for ship-radiated noise recognition based deep learning. First, we extract the features of ship-radiated noise, such as spectrum feature, MFCC coefficients, etc. Then we train CNN and DBN with these feature-extracted noise image samples and recognize ship-radiated noise. After that we make a contrast with the performance of classification of SVM.The result shows that deep learning-based method in this paper can improve the accuracy of ship-radiated noise recognition effectively. |
| |
Keywords: | Deep learning CNN DBN ship-radiated noise recognition |
本文献已被 CNKI 等数据库收录! |
| 点击此处可从《应用声学》浏览原始摘要信息 |
|
点击此处可从《应用声学》下载免费的PDF全文 |
|