首页 | 本学科首页   官方微博 | 高级检索  
     


Viscoelastic sink flow in a wedge for the UCM and Oldroyd-B models
Authors:Jonathan D. Evans  Thomas Hagen  
Affiliation:aDepartment of Mathematical Sciences, University of Bath, Bath BA2 7AY, United Kingdom;bDepartment of Mathematical Sciences, The University of Memphis, Memphis, TN 38152, USA
Abstract:
The steady planar sink flow through wedges of angle π/α with α≥1/2 of the upper convected Maxwell (UCM) and Oldroyd-B fluids is considered. The local asymptotic structure near the wedge apex is shown to comprise an outer core flow region together with thin elastic boundary layers at the wedge walls. A class of similarity solutions is described for the outer core flow in which the streamlines are straight lines giving stress and velocity singularities of O(r−2) and O(r−1), respectively, where rmuch less-than1 is the distance from the wedge apex. These solutions are matched to wall boundary layer equations which recover viscometric behaviour and are subsequently also solved using a similarity solution. The boundary layers are shown to be of thickness O(r2), their size being independent of the wedge angle. The parametric solution of this structure is determined numerically in terms of the volume flux Q and the pressure coefficient p0, both of which are assumed furnished by the flow away from the wedge apex in the r=O(1) region. The solutions as described are sufficiently general to accommodate a wide variety of external flows from the far-field r=O(1) region. Recirculating regions are implicitly assumed to be absent.
Keywords:UCM model   Oldroyd-B model   Wedge flow   Elastic boundary layers   Self-similar solutions
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号