首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Encapsulation of emitting CdTe QDs within silica beads to retain initial photoluminescence efficiency
Authors:Yang Ping  Ando Masanori  Murase Norio
Institution:Photonics Research Institute, National Institute of Advanced Industrial Science and Technology, Midorigaoka, Ikeda-city, Osaka 563-8577, Japan.
Abstract:Highly luminescent silica beads (30 nm-2 mum slashed circle) incorporating CdTe quantum dots (QDs) were prepared via a two-step preparation procedure, namely a modified St?ber synthesis and a subsequent reverse micelle route. In the modified St?ber synthesis, the silica molecules are deposited on the surface of the QDs. After this first step, these coated QDs were incorporated into silica beads via a reverse micelle route. Inductively coupled plasma analysis revealed a red-emitting silica bead of 30 nm in diameter thus prepared encapsulated roughly 14 CdTe QDs. These glass beads (30-40 nm slashed circle) retained the initial photoluminescence (PL) efficiencies of the colloidal QDs (27 and 65% for the green- and red-emitting beads, respectively). The protection of QDs by a silica layer at the first step, together with the short total reaction time, is the main reason for the retention of the PL efficiency. The size of the glass beads can be easily controlled over the wide range by adjusting the injection speed and the ratio of chemicals used for the reverse micelle preparation. Since the original efficiency was maintained in the beads and is the highest ever reported for QD-containing silica beads, the method presented here is of significant importance for applications of silica beads to biological probes.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号