首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A theory of nonvertical triplet energy transfer in terms of accurate potential energy surfaces: the transfer reaction from pi,pi* triplet donors to 1,3,5,7-cyclooctatetraene
Authors:Frutos Luis Manuel  Castano Obis  Andres Jose Luis  Merchan Manuela  Acuna A Ulises
Institution:Departamento de Quimica Fisica, Universidad de Alcala, 28871 Alcala de Henares, Madrid, Spain. luisma.frutos@uah.es
Abstract:Triplet energy transfer (TET) from aromatic donors to 1,3,5,7-cyclooctatetraene (COT) is an extreme case of "nonvertical" behavior, where the transfer rate for low-energy donors is considerably faster than that predicted for a thermally activated (Arrhenius) process. To explain the anomalous TET of COT and other molecules, a new theoretical model based on transition state theory for nonadiabatic processes is proposed here, which makes use of the adiabatic potential energy surfaces (PES) of reactants and products, as computed from high-level quantum mechanical methods, and a nonadiabatic transfer rate constant. It is shown that the rate of transfer depends on a geometrical distortion parameter gamma=(2g(2)/kappa(1))(1/2) in which g stands for the norm of the energy gradient in the PES of the acceptor triplet state and kappa(1) is a combination of vibrational force constants of the ground-state acceptor in the gradient direction. The application of the model to existing experimental data for the triplet energy transfer reaction to COT from a series of pi,pi(*) triplet donors, provides a detailed interpretation of the parameters that determine the transfer rate constant. In addition, the model shows that the observed decrease of the acceptor electronic excitation energy is due to thermal activation of C=C bond stretchings and C-C bond torsions, which collectively change the ground-state COT bent conformation (D(2d)) toward a planar triplet state (D(8h)).
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号