Constitutive relationship of brittle rock subjected to dynamic uniaxial tensile loads with microcrack interaction effects |
| |
Authors: | X.P. Zhou X.H. Li |
| |
Affiliation: | a School of Civil Engineering, Chongqing University, Chongqing 400045, PR China b Key Lab for the Exploitation of Southwestern, Resources and the Environmental Disaster Control Engineering, Ministry of Education, Chongqing University, Chongqing 400044, PR China |
| |
Abstract: | A micromechanical model is proposed to describe both stable and unstable damage evolution in microcrack-weakened brittle rock material subjected to dynamic uniaxial tensile loads. The basic idea of the present model is to classify the constitution relationship of rock material subjected to dynamic uniaxial tensile loads into four stages including some of the stages of linear elasticity, pre-peak nonlinear hardening, rapid stress drop, and strain softening, and to investigate their corresponding micromechanical damage mechanisms individually. Special attention is paid to the transition from structure rearrangements on microscale to the macroscopic inelastic strain, to the transition from distribution damage to localization of damage and the transition from homogeneous deformation to localization of deformation. The influence of all microcracks with different sizes and orientations are introduced into the constitutive relation by using the statistical average method. Effects of microcrack interaction on the complete stress-strain relation as well as the localization of damage for microcrack-weakened brittle rock material are analyzed by using effective medium method. Each microcrack is assumed to be embedded in an approximate effective medium that is weakened by uniformly distributed microcracks of the statistically-averaged length depending on the actual damage state. The elastic moduli of the approximate effective medium can be determined by using the dilute distribution method. Micromechanical kinetic equations for stable and unstable growth characterizing the ‘process domains’ of active microcracks are taken into account. These ‘process domains’ together with ‘open microcrack domains’ completely determine the integration domains of ensemble averaged constitutive equations relating macro-strain and macro-stress. Theoretical predictions have shown to consistent with the experimental results. |
| |
Keywords: | Microcrack interaction Complete stress-strain relationship Unstable damage evolution Dynamic uniaxial tensile loads |
本文献已被 ScienceDirect 等数据库收录! |
|