首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Fine tuning of gadolinium doped ceria electrolyte nanoparticles via reverse microemulsion process
Authors:J Chandradass  Baekil Nam  Ki Hyeon Kim  
Institution:aDepartment of Physics, Yeungnam University, Gyeongsan, Gyeongsangbuk-do-712-749, South Korea
Abstract:Gadolinium doped ceria (Gd–CeO2) nanoparticles have been synthesized by an reverse microemulsion system using cyclohexane as the oil phase, a non-ionic surfactant Igepal CO 520 and their mixed aqueous solutions of gadolinium III nitrate hexahydrate and cerium III nitrate hexahydrate as the water phase. The control of particle size was achieved by varying the water to surfactant molar ratio. The synthesized and calcined powders were characterized by thermogravimetry-differential thermal analysis (TGA-DTA), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy. The XRD results show that all the samples calcined at 700 °C were single phase cubic fluorite structure. The average size of the particle was found to increase with increase in water to surfactant molar ratio (R). The mean diameter of the particle for various value of R varies between 8–15 nm (SEM) and 7.5–11 nm (TEM), respectively. EDS confirm the presence of gadolinia and ceria phase in the nanopowder calcined at 700 °C. FTIR analysis was carried to monitor the elimination of residual oil and surfactant phases from the microemulsion-derived precursor and calcined powder. Raman spectroscopy and DTA evidenced the formation of a solid solution of gadolinium doped ceria at room temperature.
Keywords:Nanoparticles  Ceria-based electrolyte  Reverse microemulsion  Particle size  Scanning electron microscopy  Transmission electron microscopy
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号