首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Solid state photoelectrochemical cells utilising graphite thin films counter electrode
Authors:M Y A Rahman  M M Salleh  I A Talib  M Yahaya
Institution:(1) College of Engineering, Universiti Tenaga Nasional, 43009 Kajang, Selangor, Malaysia;(2) Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
Abstract:This paper reports the use of graphite thin films as a counter electrode of a solid state photoelectrochemical cells of ITO/TiO2/PVC-LiClO4/graphite. The photoelectrochemical cells material was a screen-printed layer of titanium dioxide onto an ITO-covered glass substrate which was used as a working electrode of the device. The solid electrolyte used was PVC-LiClO4 that was prepared by solution casting technique. The graphite films which serve as a counter electrode were prepared onto glass substrate by electron beam evaporation technique at substrate temperatures variation of 25, 50, 100, 150 and 200 °C. The dependence of sheet resistance and surface morphology of the graphite films on substrate temperature were studied. The films deposited at 25 °C shows the smoothest surface morphology and the smallest grain size. Bigger grain size, rougher surface morphology of graphite film counter electrode. The current-voltage characteristics of four devices utilising the graphite counter electrode with different substrate temperature in dark as well as under illumination of 100 mWcm?2 light from a tungsten halogen lamp were recorded at room temperature and at 50 °C, respectively. It was found that the photovoltaic parameters of the device such as short-circuit current density, Jsc and open-circuit voltage, Voc increases with the decreasing average grain size of the graphite counter electrode. The device whose graphite film counter electrode was deposited onto the glass substrate at 25 °C gave the highest Jsc of 0.32 µA/cm2 and Voc of 117 mV, respectively.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号