首页 | 本学科首页   官方微博 | 高级检索  
     

利用小波变换和神经网络对罕见病DMD的MRI进行分类识别
引用本文:章鸣嬛,陈瑛,沈瑛,马军山. 利用小波变换和神经网络对罕见病DMD的MRI进行分类识别[J]. 光学技术, 2016, 0(4): 342-346
作者姓名:章鸣嬛  陈瑛  沈瑛  马军山
作者单位:1. 上海理工大学 光电信息与计算机工程学院,上海 200093; 上海杉达学院 信息科学与技术学院 大数据分析与处理实验室,上海 201209;2. 上海杉达学院 信息科学与技术学院 大数据分析与处理实验室,上海,201209;3. 上海交通大学 医学院附属新华医院,上海,200092;4. 上海理工大学 光电信息与计算机工程学院,上海,200093
基金项目:2010年973项目(2010CB834302);2016年上海市民办高校重点科研项目(2016-SHNGE-01ZD);2015年IBM大学合作部联合研究项目:临床医学图像的分析与处理(D-2111-15-001)
摘    要:杜兴氏肌营养不良(DMD)是一种严重的儿童腿部神经肌肉罕见病。传统的诊断和检测方案一般为有创手段,会带给患儿极大的痛苦。基于受试者的磁共振图像(MRI),采用计算机辅助检测手段探索了有效的无创检测方法。实验分别选用sym4和db4两种小波基函数,对患儿组和健康对照组的MRI进行三种尺度的小波分解,从所得的分解图像中提取12个纹理特征参数,并利用人工神经网络(ANN)算法对图像参数进行分类识别。结果显示:在受试者的两类MRI加权图像(T1和T2)中,T1图像能更好地区分患儿与健康儿童;利用db4函数对图像进行小波分解,其效果略优于sym4函数,且在三种小波分解尺度中,以二层分解最优;利用ANN算法对图像进行分类识别,其灵敏度、特异度和准确率分别高达98.5%、97.3%和97.9%。该处理方法有望为临床提供客观有效的辅助诊断手段,可作为DMD疾病无创检测的尝试探索。

关 键 词:杜兴氏肌营养不良  磁共振图像  计算机辅助检测  小波变换  人工神经网络

Classification and Identification of magnetic resonance image of neuromuscular disease DMD with wavelet transform and artificial neural network
ZHANG Minghuan;CHEN Ying;SHEN Ying;MA Junshan. Classification and Identification of magnetic resonance image of neuromuscular disease DMD with wavelet transform and artificial neural network[J]. Optical Technique, 2016, 0(4): 342-346
Authors:ZHANG Minghuan  CHEN Ying  SHEN Ying  MA Junshan
Affiliation:ZHANG Minghuan;CHEN Ying;SHEN Ying;MA Junshan;School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology;Lab of Big Data Analyses and Process,School of Information Science and Technology,Shanghai Sanda University;Xinhua Hospital Affiliated to School of Medicine,Shanghai Jiaotong University;
Abstract:Duchenne muscular dystrophy (DMD)is a severe orphan neuromuscular disease in the part of legs.The conventional treatment is invasive,which incurs great sufferings.Therefore,with the aid of computers,a non-invasive detection method is explored on the basis of magnetic resonance images (MRI)of the patients.Two wavelet basis func-tion,sym4 and db4 are used and wavelet decomposition is conducted for three levels of MRI from both the sick and the healthy.12 texture parameters are extracted from the decomposed images.In the end,classification and recognition of these images are carried out by using Artificial Neural Network on the basis of these texture feature parameters.Conclu-sions of the study are as follows:(1)In the two kinds of weighed images (T1 and T2)of the sick,T1 is better in distin-guishing the sick from the healthy.(2)The results of wavelet decomposition with db4 function are better than those with sym4 function,and in the three levels decomposed,the second level is the best.(3)With the optimal wavelet function and decomposition level,classification and recognition can produce very excellent outcomes.The sensitivity,specificity and accuracy rate might reach as high as 98.5%,97.3%,97.9% respectively.This method,as a pilot for non-invasive treatment of DMD,could be expected to provide an obj ective and effective auxiliary method for clinical diagnoses.
Keywords:duchenne muscular dystrophy  magnetic resonance image  computer-aided detection  wavelet transform  artificial neural network
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号