首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Through-shell alkyllithium additions and borane reductions
Authors:Warmuth Ralf  Maverick Emily F  Knobler Carolyn B  Cram Donald J
Institution:Department of Chemistry, Kansas State University, Manhattan, Kansas 66506-3701, USA. warmuth@ksu.edu
Abstract:The through-shell borane reduction and methyllithium addition to benzaldehyde (1), benzocyclobutenone (2), and benzocyclobutenedione (3) incarcerated inside a hemicarcerand (4) with four tetramethylenedioxy bridges are reported. All guests could be reduced and methylated. Selective monoreduction and monomethylation were observed for 3. In the methyllithium addition to 4symbol: see text]3, the initially formed lithium alcoholate underwent a Moore rearrangement. The reactivity of the incarcerated guests toward methyllithium increased in the order 1 < 2 < 3 and toward borane in the order 1 < 2 approximately equal 3. Guest reactivity was correlated with the inner-phase location of the reacting carbonyl group in the preferred guest inner-phase orientation. The latter was determined from the X-ray structures of 4symbol: see text]1, 4symbol: see text]2, and 4symbol: see text]3, from molecular mechanical calculations, and from the hemicarcerand-induced upfield shift of the guest proton resonances. In the methyllithium and n-butyllithium addition to 4symbol: see text]1 and 4symbol: see text]3 at elevated temperatures, selective cleavage of a host's spanner or tetramethylenedioxy bridge, respectively, was observed. The cleavage of one spanner also took place in the methyllithium addition to the 1-methyl-2-pyrrolidinone hemicarceplex. These scission reactions are initiated by the initially formed lithium alcoholates, which show enhanced basicity and nucleophilicity in the inner phase as compared to the bulk phase. Mechanisms for the host scission reactions are discussed.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号