首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Application of Gaussian quadrature method to characterize heavy ends of hydrocarbon fluids for modeling wax precipitation
Authors:Seyyed Alireza Tabatabaei-Nejad  Elnaz Khodapanah
Institution:Chemical Engineering Department, Sahand University of Technology, Sahand New City, Tabriz, Iran
Abstract:The hydrocarbon plus fractions that comprise a significant portion of naturally occurring hydrocarbon fluids create major problems when determining the thermodynamic properties and the volumetric behavior of these fluids by equations of state. These problems arise due to the difficulty of properly characterizing the plus fractions (heavy ends). Proper characterization of the heavier components is important when cubic equations of state and/or solid formation thermodynamic models are used to describe complex phase behavior of reservoir fluids. The effect of heavy fractions characterization on thermodynamic modeling of wax precipitation has been investigated using different models including Won, Pan and proposed models. In order to characterize the plus fraction (heavier part) as a series of pseudocomponents, a probability model that expresses the mole fraction as a continuous function of the molecular weight has been used. The study has been conducted using several mixtures. Two different SCN (single carbon number), C7+C7+ and C10+C10+ were chosen. The Chosen SCN were distributed to multi-components of five, six, and/or ten using continuous function and Gaussian quadrature method. The results showed that the fractioning is required to be able to predict wax precipitation. Distribution of C10+C10+ using a proper distribution function has shown improvement in predictions of WAT and the amount of wax deposited in comparison with the characterization of C7+C7+ using semi-continuous approach. In predicting of WAT and the amount of wax build up the developed model showed superiority over the others.
Keywords:Plus fraction  Characterization  Gaussian quadrature method  Modeling wax precipitation  Pseudocomponent  Semi-continuous
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号