首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Diverse redox-active molecules bearing identical thiol-terminated tripodal tethers for studies of molecular information storage
Authors:Wei Lingyun  Padmaja Kisari  Youngblood W Justin  Lysenko Andrey B  Lindsey Jonathan S  Bocian David F
Institution:Department of Chemistry, University of California, Riverside, California 92521-0403, USA.
Abstract:To examine the effects of molecular structure on charge storage in self-assembled monolayers (SAMs), a family of redox-active molecules has been prepared wherein each molecule bears a tether composed of a tripodal linker with three protected thiol groups for surface attachment. The redox-active molecules include ferrocene, zinc porphyrin, ferrocene-zinc porphyrin, magnesium phthalocyanine, and triple-decker lanthanide sandwich coordination compounds. The tripodal tether is based on a tris4-(S-acetylthiomethyl)phenyl]-derivatized methane. Each redox-active unit is linked to the methane vertex by a 4,4'-diphenylethyne unit. The electrochemical characteristics of each compound were examined in solution and in SAMs on Au. Redox-kinetic measurements were also performed on the SAMs (with the exception of the magnesium phthalocyanine) to probe (1) the rate of electron transfer in the presence of an applied potential and (2) the rate of charge dissipation after the applied potential is disconnected. The electrochemical studies of the SAMs indicate that the tripodal tether provides a more robust anchor to the Au surface than does a tether with a single site of attachment. However, the electron-transfer and charge-dissipation characteristics of the two tethers are generally similar. These results suggest that the tripodal tether offers superior stability characteristics without sacrificing electrochemical performance.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号