Model design on calculations of microwave permeability and permittivity of Fe/SiO2 particles with core/shell structure |
| |
Authors: | Y. Yang Z.W. Li C.P. Neo J. Ding |
| |
Affiliation: | 1. Department of Materials Science and Engineering, National University of Singapore, Singapore 119260, Singapore;2. Temasek Laboratories, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore |
| |
Abstract: | Fe/SiO2 particles with core/shell structure were prepared by coating silica on the surface of a commercial spherical carbonyl iron via the hydrolysis process of tetraethyl orthosilicate (TEOS). The electromagnetic performance of commercial carbonyl iron and as-prepared Fe/SiO2 particles was studied theoretically and experimentally. As predicted by the theoretical calculation based on the Bruggeman formula and the Landau–Lifshitz–Gilbert (LLG) theory, the insulating surface layer of silica was effective to reduce the permittivity parameters of pure carbonyl iron. The measured results showed good agreement with the theoretical prediction. Although there was a little decrease in the permeability of the Fe/SiO2 core/shell particles, a better impedance match especially at higher frequency range was obtained when used as a microwave absorber. The reflection loss (RL) curves show that the lowest reflection loss of Fe/Epoxy composite (−20.5 GHz) was obtained corresponding to the frequency of 8.5 GHz when the thickness of the absorber was 3 mm. A different trend was observed in Fe/SiO2/Epoxy composite. The reflection loss value got lower by decreasing the thickness of absorbers. At the thickness of 2.2 mm, a relative low reflection loss (−17 GHz) corresponding to the frequency of 13.6 GHz was obtained. Compared with the Fe/Epoxy composite, the improvement on shifting the reflection loss peak to higher frequency and on reducing the optimal thickness of absorbers was made by Fe/SiO2/Epoxy composite. |
| |
Keywords: | A.Magnetic materials A.Nanostructures B.Chemical synthesis C.Electron microscopy D.Dielectric properties |
本文献已被 ScienceDirect 等数据库收录! |
|