Structure and catalytic properties of magnesia-supported copper salts of molybdovanadophosphoric acid |
| |
Authors: | Zhou Guangdong Yang Xiaomei Liu Jie Zhen Kaiji Wang Haishui Cheng Tiexin |
| |
Affiliation: | College of Chemistry, Jilin University, Changchun, China. |
| |
Abstract: | ![]() The structure and stability of magnesia-supported copper salts of molybdovanadophosphoric acid (Cu(2)PMo(11)VO(40)) were characterized by different techniques. The catalyst was prepared in ethanol by impregnation because this solvent does not hurt texture of the water-sensitive MgO and Cu(2)PMo(11)VO(40). The Keggin-type structure compound may be degraded partially to form oligomerized polyoxometalate when supported on MgO. However, the oligomers can rebuild as the Keggin structure again after thermal treatment in air or during the reaction. Meanwhile, the V atoms migrate out of the Keggin structure to form a lacunary structure, as observed by Fourier transform IR spectroscopy. Moreover, the presence of Cu(2+) as a countercation showed an affirmative influence on the migration of V atoms, and the active sites derived from the lacunary species generated after release of V from the Keggin anion. The electron paramagnetic resonance data imply that V(5+) autoreduces to V(4+) in the fresh catalyst, and during the catalytic reaction a large number of V(4+) ions are produced, which enhance the formation of O(2-) vacancies around the metal atoms. These oxygen vacancies may also improve the reoxidation function of the catalyst. This behavior is correlated to higher catalytic properties of this catalyst. The oxidative dehydrogenation of hexanol to hexanal was studied over this catalyst. After reaction at 553.2 K for 50 h, catalytic properties did not decrease and exhibited higher selectivity (>96.0%) toward hexanal. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|