首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Investigation of transport properties of perovskite single crystals by pulsed and DC bias transient current technique
Institution:1.School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China;2.Zhejiang Institute of Advanced Materials, Shanghai University, Jiashan 314113, China
Abstract:Time-of-flight (ToF) transient current method is an important technique to study the transport characteristics of semiconductors. Here, both the direct current (DC) and pulsed bias ToF transient current method are employed to investigate the transport properties and electric field distribution inside the MAPbI$_{3}$ single crystal detector. Owing to the almost homogeneous electric field built inside the detector during pulsed bias ToF measurement, the free hole mobility can be directly calculated to be about 22 cm$^{2}\cdot$V$^{-1}\cdot$s$^{-1}$, and the hole lifetime is around 6.5 μs-17.5 μs. Hence, the mobility-lifetime product can be derived to be $1.4\times 10^{-4}$ cm$^{2}\cdot$V$^{-1}$-$3.9\times 10^{-4}$ cm$^{2}\cdot$V$^{-1}$. The transit time measured under the DC bias deviates with increasing voltage compared with that under the pulsed bias, which arises mainly from the inhomogeneous electric field distribution inside the perovskite. The positive space charge density can then be deduced to increase from 3.1$\times10^{10}$ cm$^{-3}$ to 6.89$\times 10^{10}$ cm$^{-3}$ in a bias range of 50 V-150 V. The ToF measurement can provide us with a facile way to accurately measure the transport properties of the perovskite single crystals, and is also helpful in obtaining a rough picture of the internal electric field distribution.
Keywords:MAPbI3  space charge density  electric field distribution  time-of-flight measurement  
点击此处可从《中国物理 B》浏览原始摘要信息
点击此处可从《中国物理 B》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号