首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Lattice matrix elements and CP violation in<Emphasis Type="Italic">B</Emphasis> and<Emphasis Type="Italic">K</Emphasis> physics: Status and outlook
Authors:Amarjit Soni
Institution:(1) Physics Department, High Energy Theory Group, Brookhaven National Laboratory, 11973 Upton, NY, USA
Abstract:Status of lattice calculations of hadron matrix elements along with CP violation inB and inK systems is reviewed. Lattice has provided useful input which, in conjunction with experimental data, leads to the conclusion that CP-odd phase in the CKM matrix plays the dominant role in the observed asymmetry inB → ψK s. It is now quite likely that any beyond the SM, CP-odd, phase will cause only small deviations in B-physics. Search for the effects of the new phase(s) will consequently require very large data samples as well as very precise theoretical predictions. Clean determination ofall the angles of the unitarity triangle therefore becomes essential. In this regardB → KD0 processes play a unique role. RegardingK-decays, remarkable progress made by theory with regard to maintenance of chiral symmetry on the lattice is briefly discussed. First application already provide quantitative information onB K and the ΔI = 1/2 rule. In the lattice calculation, the enhancement in Re A0 appears to arise solely from tree operators, esp. Q2; penguin contribution toRe A0 appears to be very small. However, improved calculations are necessary for ε’/ε as the contributions of QCD penguins and electroweak penguins largely seem to cancel. There are good reasons, though, to believe that these cancellations will not survive improvements that are now underway. Importance of determining the unitarity triangle purely fromK-decays is also emphasized.
Keywords:CP  lattice  B and K-unitarity triangles  chiral symmetry  Δ  I = 1/2 rule  ε      
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号