首页 | 本学科首页   官方微博 | 高级检索  
     


Acceleration of carbon-13 spin-lattice relaxation times in amino acids by electrolytes
Authors:TIAN JinPing  YIN YingWu
Abstract:A series of amino acids and carboxylic acids were determined by 13C NMR spectroscopy.The results showed that addition of 3M MgCl2 led to the 13C NMR integral area of samples being well proportional to number of carbon atoms that produce the particular signal with reliability over 95%. Measurements of 13C spin-lattice relaxation times (T1's) are reported for a number of amino acids. T1's of all the carbons in amino acids generally tend to decrease with the increase of the concentration of electrolytes, and the presence of magnesium slats is of significant. Carboxylic carbons in amino acids are the most sensitive "acceptor" of the 13C spin-lattice relaxation accelerating effects in electrolytes, and the 13C spin-lattice relaxation accelerating ability of electrolytes is Mg(ClO4)2 >MgCl2 >CaCl2 >NaCl >KCl >LiClO4 >NaOH. In general, T1's of C1 carbons in nonpolar a-amino acids are higher than those in polar and basic a-amino acids both in aqueous and 3M MgCl2 medium. In aliphatic straight-chain amino acids, a-, a-, a-, ai- and a- amino acids, T1's of C1 carbons tend to reduce with the increase of inserted carbon numbers between amino and carboxylic groups compared with Gly. T1's can be decreased even more when amino acids are mixed in 3M MgCl2, but T1's of carbons in amino acids decrease slightly with increase of the concentration of amino acids in 3M MgCl2. The mechanisms of the observed phenomena are discussed in terms of intermolecular interaction and paramagnetic impurity in electrolytes, large contributions of intermolecular interaction which is enhanced in electrolytes concentrate on the incoming "unsaturation" of the primary solvation shell of cations with the increase of electrolytes concentration and complexes formation of amino acids with metal ions. In electrolytes, amino acids are "anchored" to cations and molecule tumbling is slowed down, molecular rigidity is increased and molecular size is "enlarged", all of these are helpful to accelerate the 13C spin-lattice relaxation. Atlast, MgCl2 is proposed as an efficient relaxation agent for analysis of amino acids and some carboxylic acids.Samples were dissolved with the aid of supersonic which has the effect of degassing, and they were degassed again with supersonic for 30 seconds right before determination. All of the 13C NMR was obtained with a Bruker DPX-300 NMR instrument, using NOE-suppressed inverse gated decoupling with a recycle delay 8.00s and a sweep width 30120.48Hz, experiment temperature is integral of the carbon with the smallest chemical shift is calibrated as 10.00. Spin-lattice relaxation times (T1's) were determined by using inversion recovery according to Bruker avance user's guide.The pulse sequence is (T-90.°-T-180°-o-90t°) n.
Keywords:Amino acids  Carboxylic acids  electrolytes  13CNMR spectroscopy  13CNMR relaxation agent
本文献已被 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号