首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A Local Relaxation Approach for the Siting of Electrical Substations
Authors:Walter Murray  Uday V Shanbhag
Institution:(1) Department of Management Science and Engineering, Stanford University, Stanford, CA, 94305-4026;(2) Department of Mechanical and Industrial Engineering, Urbana, IL, 61801
Abstract:The siting and sizing of electrical substations on a rectangular electrical grid can be formulated as an integer programming problem with a quadratic objective and linear constraints. We propose a novel approach that is based on solving a sequence of local relaxations of the problem for a given number of substations. Two methods are discussed for determining a new location from the solution of the relaxed problem. Each leads to a sequence of strictly improving feasible integer solutions. The number of substations is then modified to seek a further reduction in cost. Lower bounds for the solution are also provided by solving a sequence of mixed-integer linear programs. Results are provided for a variety of uniform and Gaussian load distributions as well as some real examples from an electric utility. The results of gams/dicopt, gams/sbb, gams/baron and cplex applied to these problems are also reported. Our algorithm shows slow growth in computational effort with the number of integer variables.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号