A chemiluminescence method for the detection of electrochemically generated H2O2 and ferryl porphyrin |
| |
Authors: | Rana Sohel Tamagake Keietsu |
| |
Affiliation: | Faculty of Pharmaceutical Sciences, Okayama University, Japan. sohel@juniv.edu |
| |
Abstract: | Electrochemical formation of H2O2 and the subsequent ferryl porphyrin were examined by measuring luminol chemiluminescence and absorption spectrum using flow-injection method. Emission was observed under the cathodic potential (0.05 V at pH 2.0 and -0.3 V at pH 11.0) by the electrochemical reduction of buffer electrolytes solution but no emission was observed at anodic potentials. Fe(III)TMPyP solution was added at the down stream of the working electrode and was essential for the emission. Removal of dissolved O2 resulted in the decrease of emission intensity by more than 70%. In order to examine the lifetime of reduced active species, delay tubes were used in between working electrode and Fe(III)TMPyP inlet. Experimental results suggested the active species were stable for quite long. The emission was quenched considerably (>90%) when hydroperoxy catalase was added at the down stream of the working electrode whereas SOD had little effect. Significant inhibition of the emission by the addition of alkene at the down stream of the Fe(III)TMPyP inlet was considered as evidence of oxo-ferryl formation. The spectra at reduction potential under aerated condition were shifted to the longer wavelength (>430 nm) compared to the original spectrum of Fe(III)TMPyP (422 nm). All the spectra were perfectly reproduced by a combination of Fe(III)TMPyP and O=Fe(IV)TMPyP (438 nm) spectra. These observations lead to the conclusion that H2O2 was produced first by electrochemical reduction of O2, which then converted Fe(III)TMPyP into O=Fe(IV)TMPyP to activate luminol. The current efficiencies for the formation of H2O2 were estimated as about 30-65% in all over the pH. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|