首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Subsets of PG(n,2) and Maximal Partial Spreads in PG(4,2)
Authors:Ron Shaw
Institution:1. Department of Mathematics, University of Hull, Hull, HU67RX, United Kingdom
Abstract:Put θ n = # {points in PG(n,2)} and φ n = #{lines in PG(n,2)}. Let ψ be anypoint-subset of PG(n,2). It is shown thatthe sum of L = #{internal lines of ψ} and L′= #{external lines of ψ} is the same for all ψ having the same cardinality:6pt] Theorem A If k is defined by k = |ψ| ? θ n ? 1, then $$L + L' = \phi _{n - 1} + k(k - 1)/2.$$ (The generalization of this to subsets of PG(n,3) is also obtained.) Let $\mathcal{S}$ be a partial spreadof lines in PG(4,2) and let N denote the number of reguli contained in $\mathcal{S}$ .Use of Theorem A gives rise to a simple proof of:6pt] Theorem B If $\mathcal{S}$ is maximal then one of the followingholds: (i) $\left| \mathcal{S} \right| = 5,{\text{ }}N = 10;{\text{ }}$ (ii) $\left| \mathcal{S} \right| = 7,{\text{ }}N = 4;{\text{ }}$ (iii) $\left| \mathcal{S} \right| = 9,{\text{ }}N = 4.$ If (i) holds then $\mathcal{S}$ is spread in a hyperplane.It is shown that possibility (ii) is realized by precisely threeprojectively distinct types of partial spread. Explicit examplesare also given of four projectively distinct types of partialspreads which realize possibility (iii). For one of these types,type X, the four reguli have a common line. It isshown that those partial spreads in PG(4,2) of size 9 which arise, by a simple construction, from a spreadin PG(5,2), are all of type X.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号