首页 | 本学科首页   官方微博 | 高级检索  
     

NIR光谱的LLE-PLS非线性建模方法及应用
引用本文:杨辉华,覃锋,王勇,吴云鸣,史晓浩,梁琼麟,王义明,罗国安. NIR光谱的LLE-PLS非线性建模方法及应用[J]. 光谱学与光谱分析, 2007, 27(10): 1955-1958
作者姓名:杨辉华  覃锋  王勇  吴云鸣  史晓浩  梁琼麟  王义明  罗国安
作者单位:清华大学分析中心,北京,100084;桂林电子科技大学计算机与控制学院,广西,桂林,541004;桂林电子科技大学计算机与控制学院,广西,桂林,541004;清华大学分析中心,北京,100084;华东理工大学药学院中药现代化工程中心,上海,200237;绿谷(集团)有限公司,上海,201203;清华大学分析中心,北京,100084
基金项目:国家科技攻关计划 , 广西科学基金 , 中国博士后科学基金
摘    要:传统的偏最小二乘(PLS)建模方法不能有效反映近红外(NIR)光谱与分析样本的物理化学性质之间存在的非线性关系。局部线性嵌入(LLE)是一种新的非线性降维方法,属于流形学习方法,它能有效地发现高维数据中的本真低维结构。结合LLE和PLS,提出一种近红外光谱非线性建模的新方法,并用于建立丹参多酚酸盐柱层析过程中丹酚酸B含量的回归校正模型。该方法首先用LLE对NIR光谱数据降维,再用PLS建立校正模型。结果表明,与多元散射校正、一阶导等预处理方法结合PLS建模比较,参数优化后的LLE-PLS方法能更准确地预测丹酚酸B的含量,其交叉验证均方根误差为0.128 mg·mL-1、决定系数为0.998 8。基于NIR光谱及LLE-PLS建模,可实现丹参多酚酸盐柱层析过程的在线检测。

关 键 词:局部线性嵌入  偏最小二乘  近红外光谱  丹参多酚酸盐
文章编号:1000-0593(2007)10-1955-04
收稿时间:2007-01-08
修稿时间:2007-01-08

LLE-PLS Nonlinear Modeling Method for Near Infrared Spectroscopy and Its Application
YANG Hui-hua,QIN Feng,WANG Yong,WU Yun-ming,SHI Xiao-hao,LIANG Qiong-lin,WANG Yi-ming,LUO Guo-an. LLE-PLS Nonlinear Modeling Method for Near Infrared Spectroscopy and Its Application[J]. Spectroscopy and Spectral Analysis, 2007, 27(10): 1955-1958
Authors:YANG Hui-hua  QIN Feng  WANG Yong  WU Yun-ming  SHI Xiao-hao  LIANG Qiong-lin  WANG Yi-ming  LUO Guo-an
Affiliation:1. Analysis Center, Tsinghua University, Beijing 100084, China2. College of Computer and Control, Guilin University of Electronic Technology, Guilin 541004, China3. The Modern Research Center for TCM, East China University of Science and Technology, Shanghai 200237, China4. Green Valley Holding Co., Ltd., Shanghai 201203, China
Abstract:The traditional near infrared (NIR) spectra modeling algorithm-partial least squares (PLS) can't effectively reflect the nonlinear correlations existing between the near infrared spectra and the chemical or physical properties of samples. Locally linear embedding (LLE) is a newly proposed nonlinear dimension reduction algorithm, which is a kind of manifold learning algorithm. It can find out the intrinsic dimension from high dimensional data effectively, and map the high dimensional input data points to a global low dimensional coordinates while keeping the spatial relations of the adjacent points, i. e. the geometry structure of the high dimensional space. No application of LLE in the information processing of NIR spectra has been reported. By combining LLE and PLS, a novel nonlinear modeling method LLE-PLS for NIR spectra was proposed. In the proposed method, LLE and PLS were adopted to deduct the dimensions of NIR spectra and build regressor, respectively. The LLE-PLS method was applied to correlate the NIR spectra with the concentrations of salvia acid B in the elution of column chromatography of Salvianolate. The results showed that LLE-PLS outperformed other preprocessing methods such as multiplicative scattering correction, the 1st derivative, vector normalization, minimum-maximum normalization, detrend, debias, and the 2nd derivative. After parameter optimization, LLE-PLS can accurately predict the concentration of salvia acid B, with a minimum RMSECV of 0.128 mg x mL(-1) and r2 of 0.9988, suggesting that LLE-PLS is better than PLS in modeling and prediction. The parameter of the number of nearest neighbor k of LLE-PLS and output dimension d can affect the performance of the method. The research showed that k is robust to RMSECV, and an excessively low or high output dimension d will result in a greater error because of insufficient or excessive information extraction. It can be concluded that LLE-PLS can effectively model the nonlinear correlations between spectra and physicochemical properties of the samples. And it is feasible to actualize online monitoring of the process of column chromatography of Salvianolate by coupling NIR spectra with LLE-PLS modeling method.
Keywords:Locally linear embedding  Partial least squares  Near infrared spectroscopy  Salvianolate
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《光谱学与光谱分析》浏览原始摘要信息
点击此处可从《光谱学与光谱分析》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号