首页 | 本学科首页   官方微博 | 高级检索  
     检索      


PROTECTION OF THE D1 PHOTOSYSTEM II REACTION CENTER PROTEIN FROM DEGRADATION IN ULTRAVIOLET RADIATION FOLLOWING ADAPTATION OF Brassica napus L. TO GROWTH IN ULTRAVIOLET-B
Authors:Michael I  Wilson Bruce M  Greenberg
Institution:Department of Biology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
Abstract:As depletion of the stratospheric ozone layer continues, the biosphere will most likely be exposed to higher levels of ultraviolet-B (UV-B) irradiation (290–320nm). For plants, damage from UV-B can occur at several molecular targets with the photosynthetic apparatus being especially vulnerable. We are interested both in the mechanisms of UV-B-induced damage and identifying adaptation processes that can confer protection from UV-B. Toward this end, Brassica napus (oil seed rape) plants grown under visible light plus a low level of UV-B radiation (adapted plants) were compared to plants grown under visible light alone (control plants). Relative to the control plants, the adapted plants showed little evidence of damage at the levels of morphology or photosynthesis, indicating that B. napus has some tolerance of UV-B and that the plants may have protection mechanisms. Consistent with this, a strong UV-B adaptation process was observed in the plants-accumulation of flavonoids in the epidermis. These pigments seemed to screen a molecular target in the mesophyll. Namely, the D1 photosystem II reaction center protein, which is rapidly degraded in UV-B, was partially protected from degradation in UV-B in the adapted plants. Moreover, the extent that the half-life of the D1 protein increased in the adapted plants was on par with the elevation in total flavonoid concentrations. These experiments demonstrate that degradation of the D1 protein can be used as an in vivo assay of penetration of UV-B photons to the mesophyll.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号