首页 | 本学科首页   官方微博 | 高级检索  
     

货车枕簧丢失故障动态图像识别方法
引用本文:姜媛,周富强,张广军. 货车枕簧丢失故障动态图像识别方法[J]. 光学技术, 2007, 33(5): 662-665
作者姓名:姜媛  周富强  张广军
作者单位:北京航空航天大学,北京,100083;北京航空航天大学,北京,100083;北京航空航天大学,北京,100083
基金项目:教育部新世纪优秀人才支持计划资助(NCET-05-0194)
摘    要:针对货车运行故障动态图像检测,提出无故障目标识别工作模式,解决货车枕簧丢失故障的自动识别问题。利用Haar特征提取枕簧特征信息,基于AdaBoost算法选取特征并构建层叠分类器,等比缩放搜索窗口检测货车图像,最终分选出无故障的枕簧图像,从而大大地减少了待识别图像的数量,显著地提高了人工识别效率。实验表明,该算法使用的特征简单,搜索策略高效,不受枕簧位置、缩放和旋转的影响,抗噪能力强,对分辨率低、局部遮挡、光照不足或过度曝光等质量较差的图像仍具有很强的适应性,所提出的方案能够满足全天候条件下的货车枕簧目标识别,为货车故障动态图像检测的工程化应用奠定了基础。

关 键 词:目标识别  货车枕簧  Haar特征  Adaboost算法  动态图像
收稿时间:2006-09-18

An automatic recognition method for trouble of sleeper springs of freight cars
JIANG Yuan,ZHOU Fu-qiang,ZHANG Guang-jun. An automatic recognition method for trouble of sleeper springs of freight cars[J]. Optical Technique, 2007, 33(5): 662-665
Authors:JIANG Yuan  ZHOU Fu-qiang  ZHANG Guang-jun
Abstract:A novel conception of automatic recognition in the way of no trouble is proposed for trouble of moving freight car detection system(TFDS),to solve the detection problem of sleeper springs in freight cars.The recognition system inspires the feature pool of sleeper springs by Haar features,selects features by Adaboost algorithm,builds a cascade of classifier,scans the whole image with detector of the classifier at every scale,and at last separates images with no trouble.It drastically reduces the amount of detected images and improves the manual recognition efficiency.Experiments show that the proposed method applies a set of simple features and an efficiency detecting strategy,performs high robustness against noise as well as transformation,rotation and scale of objects,and indicates high stability to the images with poor quality,such as low resolution,occlusion,poor illumination and excess exposure etc.The method can recognize sleeper springs in all-weather conditions,which advances the engineering application for TFDS.
Keywords:object recognition  sleeper springs  Haar features  adaboost algorithm  dynamic images
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号