Determination of the absolute configurations of natural products via density functional theory calculations of vibrational circular dichroism, electronic circular dichroism, and optical rotation: the iridoids plumericin and isoplumericin |
| |
Authors: | Stephens P J Pan J J Devlin F J Krohn K Kurtán T |
| |
Affiliation: | Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, USA. pstephen@usc.edu |
| |
Abstract: | The absolute configurations (ACs) of the iridoid natural products, plumericin (1) and isoplumericin (2), have been re-investigated using vibrational circular dichroism (VCD) spectroscopy, electronic circular dichroism (ECD) spectroscopy, and optical rotatory dispersion (ORD). Comparison of DFT calculations of the VCD spectra of 1 and 2 to the experimental VCD spectra of the natural products, (+)-1 and (+)-2, leads unambiguously to the AC (1R,5S,8S,9S,10S)-(+) for both 1 and 2. In contrast, comparison of time-dependent DFT (TDDFT) calculations of the ECD spectra of 1 and 2 to the experimental spectra of (+)-1 and (+)-2 does not permit definitive assignment of their ACs. On the other hand, TDDFT calculations of the ORD of (1R,5S,8S,9S,10S)-1 and -2 over the range of 365-589 nm are in excellent agreement with the experimental data of (+)-1 and (+)-2, confirming the ACs derived from the VCD spectra. Thus, the ACs initially proposed by Albers-Sch?nberg and Schmid are shown to be correct, and the opposite ACs recently derived from the ECD spectra of 1 and 2 by Els?sser et al. are shown to be incorrect. As a result, the ACs of other iridoid natural products obtained by chemical correlation with 1 and 2 are not in need of revision. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|