首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Improvement of thermoplasticity for s‐BPDA/PDA by copolymerization and blend with novel asymmetric BPDA‐based polyimides
Authors:Masatoshi Hasegawa  Nobuyuki Sensui  Yoichi Shindo  Rikio Yokota
Abstract:Asymmetric biphenyl type polyimides (PI) derived from 2,3,3′,4′‐biphenyltetracarboxylic dianhydride (a‐BPDA) and p‐phenylenediamine (PDA) or 4,4′‐oxydianiline (ODA) show higher Tgs, and much better thermoplasticity than the corresponding isomeric PIs from symmetric 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (s‐BPDA). In addition, a‐BPDA‐derived PIs are completely amorphous owing to their bent chain structures and highly distorted conformations, whereas the PIs from s‐BPDA are semicrystalline. a‐BPDA‐derived PIs possessing these properties or the a‐BPDA monomer were used as a flexible blend component or a comonomer to improve the insufficient thermoplasticity of semirigid s‐BPDA/PDA homo polymer. The blends composed of s‐BPDA/PDA (80%) with a‐BPDA‐derived PIs (20%), as well as the s‐BPDA/PDA‐based copolymer containing 20% a‐BPDA, showed a certain extent of thermoplasticity above the Tgs without causing a decrease in Tg. In addition, these blends and copolymer provided comparatively low thermal expansion coefficient (ca. 18 ppm). The improved film properties for the blends are related to good blend miscibility. On the other hand, when s‐BPDA/ODA was used as a flexible matrix polymer instead of a‐BPDA‐derived PIs, the 80/20 blend film annealed at 400°C exhibited no prominent softening at the Tg. This result arises from annealing‐induced crystallization of the flexible s‐BPDA/ODA component. Thus, these results revealed that a‐BPDA‐derived PIs are promising candidates as matrix polymers for semirigid s‐BPDA/PDA for the present purpose. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2499–2511, 1999
Keywords:s‐BPDA‐PDA  a‐BPDA‐PDA  a‐BPDA‐ODA  thermoplasticity  asymmetric biphenyl type polyimides  blend miscibility  coefficient of thermal expansion
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号