Abstract: | Effects of a flow field (E) on segregation and flow of polymer chains are studied in two dimensions using a hybrid (discrete‐to‐continuum) simulation. The flow rate (j) of polymer chains is found to increase monotonically with E, a linear response in the low field regime followed by a slow approach to saturation in the high field regime. The effective chain permeability (ϕc = j/E) varies nonmonotonically on increasing the field E, with a maximum (ϕcm) at a characteristic value of the field (in the range 0.2 < E < 2); ϕcm depends on the chain length. Chain aggregates exhibit an anisotropic mass distribution due to the field with a molecular bridging at high fields. The longitudinal component of the radius of gyration (Rgx) exhibits a crossover from a random walk (RW) (Rgx ˜ Lc1/2) at E = 0 to an elongated conformation (Rgx ˜Lc) at E ⪈ 0.2; the transverse component changes from Rgy ˜ Lc1/2 to Rgy ˜ Lc1/3. The width of the radial distribution function (ρ(r)) of the monomers increases while its peak varies nonmonotonically with E and is consistent with the observation of anisotropic mass distribution. |