首页 | 本学科首页   官方微博 | 高级检索  
     


High-throughput simultaneous analysis of buprenorphine, methadone, cocaine, opiates, nicotine, and metabolites in oral fluid by liquid chromatography tandem mass spectrometry
Authors:Marta Concheiro  Teresa R. Gray  Diaa M. Shakleya  Marilyn A. Huestis
Affiliation:1. Servicio de Toxicología Forense, Dpto. Anatomía Patológica y Ciencias Forenses, Facultad de Medicina, Universidad de Santiago de Compostela, C/San Francisco s/n, 15782, Santiago de Compostela (A Coru?a), Spain
2. Chemistry and Drug Metabolism, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Biomedical Research Center (BRC), 251 Bayview Boulevard, Suite 200, Room 05A721, Baltimore, MD, 21224, USA
Abstract:
A method for simultaneous determination of buprenorphine (BUP), norbuprenorphine (NBUP), methadone, 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP), cocaine, benzoylecgonine (BE), ecgonine methyl ester (EME), anhydroecgonine methyl ester (AEME), morphine, codeine, 6-acetylmorphine (6AM), heroin, 6-acetylcodeine (6AC), nicotine, cotinine, and trans-3′-hydroxycotinine (OH-cotinine) by liquid chromatography tandem mass spectrometry in oral fluid (OF) was developed and extensively validated. Acetonitrile (800 μL) and OF (250 μL) were added to a 96-well Isolute-PPT+protein precipitation plate. Reverse-phase separation was achieved in 16 min and quantification was performed by multiple reaction monitoring. The assay was linear from 0.5 or 1 to 500 μg/L. Intraday, interday, and total imprecision were less than 13% (n?=?20), analytical recovery was 92–114% (n?=?20), extraction efficiencies were more than 77% (n?=?5), and process efficiencies were more than 45% (n?=?5). Although ion suppression was detected for EME, cocaine, morphine, 6AC, and heroin (less than 56%) and enhancement was detected for BE and nicotine (less than 316%), deuterated internal standards compensated for these effects. The method was sensitive (limit of detection 0.2–0.8 μg/L) and specific (no interferences) except that 3-hydroxy-4-methoxyamphetamine interfered with AEME. No carryover was detected, and all analytes were stable for 24 h at 22 °C, for 72 h at 4 °C, and after three freeze–thaw cycles, except cocaine, 6AC, and heroin (22–97% loss). The method was applied to 41 OF specimens collected throughout pregnancy with a Salivette® OF collection device from an opioid-dependent BUP-maintained pregnant woman. BUP ranged from 0 to 7,400 μg/L, NBUP from 0 to 71 μg/L, methadone from 0 to 3 μg/L, nicotine from 32 to 5,020 μg/L, cotinine from 125 to 508 μg/L, OH-cotinine from 11 to 51 μg/L, cocaine from 0 to 419 μg/L, BE from 0 to 351 μg/L, EME from 0 to 286 μg/L, AEME from 0 to 7 μg/L, morphine from 0 to 22 μg/L, codeine from 0 to 1 μg/L, 6AM from 0 to 4 μg/L, and heroin from 0 to 2 μg/L. All specimens tested negative for EDDP and 6AC. This method permits a fast and simultaneous quantification of 16 drugs and metabolites in OF, with good selectivity and sensitivity.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号