首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Heat and mass transfer characteristics during rapid solidification of Fe-Cu peritectic alloys
Authors:JinFeng Xu  FuPing Dai  BingBo Wei
Institution:(1) Department of Applied Physics, Northwestern Polytechnical University, Xi’an, 710072, China;(2) School of Materials Science and Engineering, Xi’an University of Technology, Xi’an, 710048, China
Abstract:The viscose flow and microstructure formation of Fe-Cu peritectic alloy melts are investigated by analyzing the velocity and temperature fields during rapid solidification, which is verified by rapid quenching experiments. It is found that a large temperature gradient exists along the vertical direction of melt puddle, whereas there is no obvious temperature variation in the tangent direction of roller surface. After being sprayed from a nozzle, the alloy melt changes the magnitude and direction of its flow and velocity rapidly at a height of about 180 μm. The horizontal flow velocity increases rapidly, but the vertical flow velocity decreases sharply. A thermal boundary layer with 160–300 μm in height and a momentum boundary layer with 160–240 μm in thickness are formed at the bottom of melt puddle, and the Reynolds number Re is in the range of 870 to 1070 in the boundary layer. With the increase of Re number, the cooling rate increases linearly and the thickness of thermal boundary layer increases monotonically. The thickness of momentum boundary layer decreases slowly at first, then rises slightly and decreases sharply. If Re < 1024, the liquid flow has remarkable effects on the microstructure formation due to dominant momentum transfer. The separated liquid phase is likely to form a fiber-like microstructure. If Re>1024, the heat transfer becomes dominating and the liquid phase flow is suppressed, which results in the formation of fine and uniform equiaxed microstructures. Supported by the National Natural Science Foundation of China (Grant Nos. 50121101 and 50395105)
Keywords:peritectic alloy  liquid phase separation  fluid flow  heat transfer  rapid solidification
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号