首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Diffusion and relaxation effects in general stray field NMR experiments
Authors:Hürlimann M D
Institution:Schlumberger-Doll Research, Ridgefield, Connecticut 06877-4108, USA.
Abstract:We analyze the evolution of magnetization following any series of radiofrequency pulses in strongly inhomogeneous fields, with particular attention to diffusion and relaxation effects. When the inhomogeneity of the static magnetic field approaches or exceeds the strength of the RF field, the magnetization has contributions from different coherence pathways. The diffusion or relaxation induced decay of the signal amplitude is in general nonexponential, even if the sample has single relaxation times T(1), T(2) and a single diffusion coefficient D. In addition, the shape of the echo depends on diffusion and relaxation. It is possible to separate contributions from different coherence pathways by phase cycling of the RF pulses. The general analysis is tested on stray field measurements using two different pulse sequences. We find excellent agreement between measurements and calculations. The inversion recovery sequence is used to study the relaxation effects. We demonstrate two different approaches of data analysis to extract the relaxation time T(1). Finite pulse width effects on the timing of the echo formation are also studied. Diffusion effects are analyzed using the Carr--Purcell--Meiboom--Gill sequence. In a stray field of a constant gradient g, we find that unrestricted diffusion leads to nonexponential signal decay versus echo number N, but within experimental error the diffusion attenuation is still only a function of g(2)Dt(3)(E)N, where t(E) is the echo spacing.
Keywords:stray field NMR  relaxation  diffusion  CPMG
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号