首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Spatially averaged time-resolved particle-tracking velocimetry in microspace considering Brownian motion of submicron fluorescent particles
Authors:Y Sato  S Inaba  K Hishida  M Maeda
Institution:(1) Department of System Design Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
Abstract:A time-series measurement method is proposed to detect velocity fields in a microchannel taking into account Brownian motion of submicron tracer particles. The present study proposes spatially averaged time-resolved particle-tracking velocimetry (SAT–PTV), which can detect temporal variations of fluid flow and eliminate errors associated with Brownian motion without losing temporal resolution. Velocity vectors of tracer particles obtained by PTV are spatially averaged in each interrogation window of particle-image velocimetry, yielding full velocity field information with temporal resolution. Synthetic particle images, which include Brownian motion of submicron fluorescent particles in flow fields with linear velocity gradients, are generated to validate the ability of SAT–PTV to track particles. SAT–PTV correctly captures the velocity gradient profiles. The spatial resolution based on the size of the first interrogation window and the measurement depth of the microscope system is 6.7 mgrm×6.7 mgrm×1.9 mgrm, within which several vectors are averaged. SAT–PTV is shown to measure the velocity field of a pulsating flow generated by an electrokinetic pump.An earlier version of this paper appeared in the Fourth International Symposium on Particle Image Velocimetry at Göttingen, Germany, 17–19 September 2001.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号