首页 | 本学科首页   官方微博 | 高级检索  
     

具有变时滞的离散双向联想记忆神经网络的全局指数稳定性
引用本文:康慧燕,姜忠义,斯力更. 具有变时滞的离散双向联想记忆神经网络的全局指数稳定性[J]. 数学的实践与认识, 2008, 38(19)
作者姓名:康慧燕  姜忠义  斯力更
基金项目:国家自然科学基金  
摘    要:利用Lyapunov函数和线性矩阵不等式(LMI),给出了判定一类双向联想记忆(BAM)神经网络模型的指数稳定的充分性条件.该条件去掉了以往论文中所要求的激活函数单调,可微分的条件,而且所得结果利用里的工具易于检测.并举例说明本文结果的有效性.

关 键 词:BAM神经网络  离散时滞  全局指数稳定  线性矩阵不等式

Globally Exponential Stability of Discrete-time Bi-directional Associative Memory Networks with Time-varying Delays
KANG Hui-yan,JIANG Zhong-yi,SI Li-geng. Globally Exponential Stability of Discrete-time Bi-directional Associative Memory Networks with Time-varying Delays[J]. Mathematics in Practice and Theory, 2008, 38(19)
Authors:KANG Hui-yan  JIANG Zhong-yi  SI Li-geng
Abstract:In this letter, by employing a Lyapunov-Krasovskii function and linear matrix inequality (LMI), we derive a globally exponentially stabile sufficient condition for discrete-time ABM neural networks with variable delays. The activation funtions are assumed to be neither strict monotonic nor differentiable. The feasibility of such an LMI can be easily checked by using the numerically efficient Matlab LMI Toolbox. A numerical example is illustrated to show the effectiveness of our result.
Keywords:ABM neural networks   discrete-time   globally exponential stability   linear matrix inequality (LMI)
本文献已被 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号