首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Quantum Communication Complexity
Authors:Gilles Brassard
Institution:(1) Département IRO, Université de Montréal, C.P. 6128, succursale centre-ville, Montréal, (Québec), H3C 3J7, Canada
Abstract:Can quantum communication be more efficient than its classical counterpart? Holevo's theorem rules out the possibility of communicating more than n bits of classical information by the transmission of n quantum bits—unless the two parties are entangled, in which case twice as many classical bits can be communicated but no more. In apparent contradiction, there are distributed computational tasks for which quantum communication cannot be simulated efficiently by classical means. In some cases, the effect of transmitting quantum bits cannot be achieved classically short of transmitting an exponentially larger number of bits. In a similar vein, can entanglement be used to save on classical communication? It is well known that entanglement on its own is useless for the transmission of information. Yet, there are distributed tasks that cannot be accomplished at all in a classical world when communication is not allowed, but that become possible if the non-communicating parties share prior entanglement. This leads to the question of how expensive it is, in terms of classical communication, to provide an exact simulation of the spooky power of entanglement.
Keywords:Bell's theorem  communication complexity  distributed computation  entanglement simulation  pseudo-telepathy  spooky communication
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号