首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of Sudden Expansion on Entrainment and Spreading Rates of a Jet Issuing from Asymmetric Nozzles
Authors:Christopher O. Iyogun  Madjid Birouk
Affiliation:(1) Department of Mechanical and Manufacturing Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
Abstract:Turbulent free jets issuing from five different nozzle geometries; smooth pipe, contracted circular, rectangular, triangular, and square, are experimentally investigated by using TSI 2-D laser Doppler velocimetry (LDV) to assess the effect of nozzle geometry and quarl (i.e. a cylindrical sudden expansion) on jet entrainment and spreading. The centerline mean velocity decay and the jet half-velocity width, which are indicators of jet entrainment and spreading rates, are determined for each nozzle’s flow configuration, i.e. with and without sudden expansion. Furthermore, turbulence quantities, such as the flow mean velocities and their mean fluctuating components, as well as Reynolds shear stresses, are all measured along the centerline plane of the jet to facilitate understanding the extent of the effect of nozzle’s geometry (i.e. nozzle’s orifice shape and sudden expansion) on jet’s entrainment and spreading. The main results show that the jet flow with the presence of sudden expansion exhibits higher rates of entrainment and spreading than without. In addition, these results reveal that sudden expansion exercises a greater effect on the asymmetric jet characteristics, especially for the triangular and rectangular nozzles compared to their axisymmetric counterparts (i.e. circular contracted nozzle).
Keywords:Free jet  Turbulence  Asymmetric nozzle  Entrainment  Spreading  Mixing
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号