首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Quenching of SO2 phosphorescence by a magnetic field
Authors:VLADIMIR I MAKAROV
Abstract:Phosphorescence excitation spectra of the ã3B1← Xtilde]1A1 transition of SO2 were measured in the absence and presence of a magnetic field (B = 0?44 T2, P(SO2) = 0?7 Torr). The absorption and phosphorescence excitation spectra of the ã3B1← Xtilde]1A1 transition of SO2 measured in the absence of a magnetic field show that the relative intensity of the bands of the phosphorescence excitation spectrum is smaller than the relative intensity of the corresponding bands of the absorption spectrum beginning with the (0, 2, 0) band. In the presence of a magnetic field, the intensity of the phosphorescence excitation band falls, for νexc> 26400 cm-1. Under the direct excitation of the ã3B1← Xtilde]1A1 transition, the dependence of the magnetic quenching of the SO2 phosphorescence on the excitation frequency (νexc) was studied at P(SO2) = 0?7 Torr and B = 0?44 T. The dependence of the magnetic field effect on νexcshows that only the vibrationally excited levels of the ã3B1 state are sensitive to an external magnetic field. The magnetic field strength and the pressure dependence of the magnetic field effects were studied under indirect excitation of the ã3B1← Xtilde]1A1 transition at λexc = 308 nm. The magnetic field and the pressure dependence were investigated for pure SO2 and for SO2 + RH (RH n-C5H12) mixtures. It was found that the magnetic field effect was saturated at B ? 0?25 T. The saturation value (Gr = l(0?3 T)/l(0)) increases with increasing gas pressure. The magnetic field, the pressure and the excess vibrational energy (νexcess) dependence of the magnetic quenching of SO2 phosphorescence show that the data observed can be explained by an indirect mechanism within the framework of a low level density approximation.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号