首页 | 本学科首页   官方微博 | 高级检索  
     检索      

贫燃/富燃循环气氛下原位活化Pd负载钙钛矿催化剂促进NOx还原消除
引用本文:赵东越,杨岳溪,高中楠,尹萌欣,田野,张静,姜政,于晓波,李新刚.贫燃/富燃循环气氛下原位活化Pd负载钙钛矿催化剂促进NOx还原消除[J].催化学报,2021,42(5):795-807,中插15-中插20.
作者姓名:赵东越  杨岳溪  高中楠  尹萌欣  田野  张静  姜政  于晓波  李新刚
作者单位:天津大学化工学院, 天津化学化工协同创新中心, 化学工程联合国家重点实验室,天津市应用催化科学与工程重点实验室, 天津300072;中国科学院高能物理研究所, 北京100049;中国科学院上海应用物理研究所上海同步辐射光源, 上海201800;吉林化工学院材料科学与工程学院, 吉林吉林132022
基金项目:国家自然科学基金项目;This work was supported by the National Natural Science Foundation of China ;and the Program of Introducing Talents of Disciplines to China Universities ;吉林省教育厅"十三五"科学研究规划项目;高等学校学科创新引智计划项目;Scientific Research Project of Jilin Provincial Education Department
摘    要:稀燃发动机通过提高空燃比来改善燃油经济性,减少CO2排放.但由于空燃比较高,稀燃发动机尾气中的NOx无法通过传统的三效催化技术有效消除.为了解决这一问题,适用于稀燃条件的NOx储存还原(NSR)技术得到了开发和应用.传统的NSR催化剂以贵金属Pt作为其氧化还原活性中心.Pt基催化剂具有较高的NOx消除活性,然而热稳定性差,高温下易团聚失活.据报道,Pd具有比Pt更好的热稳定性和抗硫性,且能够在更低的温度下活化还原剂,促进NOx还原.但De-NOx反应中的活性Pd物种至今仍无定论,这对设计高效的Pd基NSR催化剂提出了挑战.本文设计制备了具有高活性的Pd负载型钙钛矿催化剂(Pd-La0.7Sr0.3MnO3).其中钙钛矿组分的加入提高了Pd基催化剂的NO氧化能力和热稳定性,并提供了可用于NOx储存的碱性位点.通过调节金属-载体相互作用,使Pd催化剂在NSR反应气氛下发生了自活化现象,活化后催化剂的NOx消除活性由56.1%提高到90.1%,同时副产物N2O的选择性降低.XRD、XAFS和XPS等表征结果显示,在反应气氛下催化剂中的Pd2+被部分还原为高活性的Pd0物种.相较于Pd2+,Pd0表现出更强的活化C3H6的性能,从而提高了催化剂在富燃阶段的NOx还原效率.结合XPS、CO化学吸附和动力学的实验结果,计算得出Pd0位点的NOx还原速率是Pd2+位点的8倍,从实验现象和动力学计算两个角度分别证明Pd0物种具有更优异的NOx还原活性.然而,Pd0物种的生成需要适当强度的金属-载体相互作用.通过与传统的Pd/BaO/Al2O3催化剂进行对比研究,发现金属-载体相互作用过强时,在富燃阶段Pd2+物种难以被还原,且还原得到的Pd0物种并不稳定,会在随后的贫燃阶段被快速重新氧化为Pd2+.强相互作用虽然可以降低Pd物种粒径,提高Pd的分散度,但由于无法产生高活性的Pd0物种,催化剂的NOx消除性能显著降低.此外,相较于传统的Pd/BaO/Al2O3和Pt/BaO/Al2O3催化剂,Pd负载型钙钛矿催化剂具有更为优异的NO氧化能力,且储存位碱性适中,因而表现出更强的抗H2O、CO2和SO2的性能,具有良好的应用前景.本文的结果说明了金属-载体相互作用对催化剂活性的显著影响,同时也为理解和设计应用于动态氧化/还原气氛的金属催化剂提供了新的思路.

关 键 词:贫燃  氮氧化物还原  金属-载体相互作用  原位活化  

Promoting NOx reduction via in situ activation of perovskite supported Pd catalysts under alternating lean-burn/fuel-rich operating atmospheres
Dongyue Zhao,Yuexi Yang,Zhongnan Gao,Mengxin Yin,Ye Tian,Jing Zhang,Zheng Jiang,Xiaobo Yu,Xingang Li.Promoting NOx reduction via in situ activation of perovskite supported Pd catalysts under alternating lean-burn/fuel-rich operating atmospheres[J].Chinese Journal of Catalysis,2021,42(5):795-807,中插15-中插20.
Authors:Dongyue Zhao  Yuexi Yang  Zhongnan Gao  Mengxin Yin  Ye Tian  Jing Zhang  Zheng Jiang  Xiaobo Yu  Xingang Li
Institution:(Collaborative Innovation Center of Chemical Science and Engineering(Tianjin),Tianjin Key Laboratory of Applied Catalysis Science and Technology,School of Chemical Engineering and Technology,Tianjin University,Tianjin 300072,China;Institute of High Energy Physics,Chinese Academy of Sciences,Beijing 100049,China;Shanghai Synchrotron Radiation Facility,Shanghai Institute of Applied Physics,Chinese Academy of Sciences,Shanghai 201800,China;College of Materials Science and Engineering,Jilin Institute of Chemical Technology,Jilin 132022,Jilin,China)
Abstract:Herein, we report the excellent De-NOx performance of La0.7Sr0.3MnO3 (LSM) perovskite-supported Pd catalysts (Pd-LSM) in alternating lean-burn/fuel-rich atmospheres using C3H6 as reductant and describe the in situ activation of the Pd catalysts via metal-support interaction (MSI) tuning. The NOx reduction conversion of the Pd-LSM catalyst increased significantly from 56.1% to 90.1% and the production of N2O was suppressed. Our results demonstrated that this behavior was mainly at-tributed to the in situ transformation of Pd2+ into Pd0 during the reaction. The generated Pd0 species could readily activate the C3H6 reductant and achieve an eight-fold higher turnover frequency than Pd2+ for the reduction of NOx. Moreover, excessive MSIs inhibited the in situ generation of Pd0, and thereby, lowered the De-NOx activity of the catalyst even at high Pd dispersion. In addition, the Pd-LSM catalysts exhibited much higher S tolerance than conventional Al2O3-supported catalysts. Our study provides a new approach for analyzing and designing highly active metal catalysts oper-ated under dynamic alternating oxidizing/reducing atmospheric conditions.
Keywords:Lean-burn N  Ox reduction  Metal-support interactions  In situ activation  Pd
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号