首页 | 本学科首页   官方微博 | 高级检索  
     检索      

MnOx/g-C3N4光热协同催化净化NO的性能增强和反应机理
引用本文:陈鹏,董帆,冉茂希,李佳芮.MnOx/g-C3N4光热协同催化净化NO的性能增强和反应机理[J].催化学报,2018,39(4):619-629.
作者姓名:陈鹏  董帆  冉茂希  李佳芮
作者单位:重庆工商大学环境与资源学院,重庆市催化与环境新材料重点实验室,重庆400067
基金项目:国家重点研发计划,国家自然科学基金,重庆市高校创新团队,重庆市自然科学基金,This work was supported by the National Key R&D Plan,the National Natural Science Foundation of China,the Innovative Research Team of Chongqing,the Natural Science Foundation of Chongqing
摘    要:许多研究表明, MnOx和g-C3N4均有催化氧化NO的活性, 并且探索了它们各自的转化机理. 然而, MnOx/g-C3N4复合材料的光热催化机理仍然是一个未解决的问题. 我们通过室温沉淀法直接合成不同摩尔比的MnOx/g-C3N4, 并发现其表现出良好的光热协同催化氧化NO的性能. MnOx/g-C3N4催化剂在g-C3N4表面含有不同价态的MnOx. 通过原位红外光谱在60 ℃下研究了紫外-可见光诱导的MnOx热催化NO的机理以及MnOx/g-C3N4光热协同催化NO的机理. 结果表明, 光照对MnOx热催化NO的过程几乎没有影响, 但对MnOx/g-C3N4光热协同催化NO产生积极作用并且形成重要的催化循环机制. 具体过程是光生电子(e-)转移到MnOx上参与光热协同的还原循环(Mn4+→Mn3+→Mn2+), 且低价Mn离子易给出电子(e-)与光生空穴(h+)相结合而诱导逆向的循环(Mn2+→Mn3+→Mn4+), 使活性氧空位再生. 通过MnOx(Mn4+/Mn3+/Mn2+)变价而产生的活性氧(O-)可将中间产物(NOH和N2O2-)氧化为终产物(NO2-和NO3-). 这将为开发更好的净化NOx的催化剂提供重要的指导意义. XRD表征结果表明, MnOx/g-C3N4复合催化剂的结晶度较低. TEM和XPS表征结果表明, g-C3N4表面含有多种低结晶度的MnOx, 主要含有MnO, MnO2和Mn2O3. 此外, 通过对比MnOx和1:5 MnOx/g-C3N4催化净化NO的XPS结果, 发现反应后的MnOx含有大量Mn-Nitrate且Mn3+和Mn4+大幅度减少; 同时, 反应前后1:5 MnOx/g-C3N4的Mn2+, Mn3+和Mn4+的含量变化微弱. BET-BJH测试结果显示, MnOx/g-C3N4复合催化剂的比表面积和孔容均高于纯g-C3N4. UV-Vis DRS测试结果显示, MnOx/g-C3N4复合催化剂显示了良好的可见光吸收能力. 紫外-可见光催化去除NO的测试结果表明, 1:5 MnOx/g-C3N4(44%)的光催化活性明显高于MnOx(28%)和g-C3N4(36%). ESR测试结果表明, 参与反应的主要活性物种为·O2-自由基. EPR测试结果表明, 1:5 MnOx/g-C3N4的氧空位明显多于MnOx, 丰富的活性氧空位更有利于电子的迁移且促进Mnn+(n = 2, 3和4)的变价而诱导O2分子形成活性氧(O-). 以上结果清晰地表明1:5 MnOx/g-C3N4表现出不同的理化特性.可见光催化氧化NO的原位红外光谱表明, 光照前后MnOx催化氧化NO的过程没有明显的变化, 表明其属于典型的热催化过程, 综合上述表征结果发现MnOx的氧缺陷是Mnn+(n = 3和4)变价的活性位点, 可诱导O2产生活性氧催化氧化NO为硝酸盐吸附在MnOx上; 光照前后1:5 MnOx/g-C3N4催化氧化NO的过程有明显不同, 光照前主要表现为g-C3N4表面MnOx的热催化过程, 而光照后1:5 MnOx/g-C3N4为光热协同催化NO的过程. 具体过程是g-C3N4的光生电子(e-)转移到MnOx上参与光热协同的还原循环(Mn4+→Mn3+→Mn2+), 且低价Mn离子易给出电子(e-)与光生空穴(h+)相结合而诱导逆向的循环(Mn2+→Mn3+→Mn4+)使活性氧空位再生. 通过MnOx(Mn4+/Mn3+/Mn2+)变价而产生的活性氧(O-)可将中间产物(NOH和N2O2-)氧化为终产物(NO2-和NO3-).

关 键 词:MnOx  g-C3N4  协同催化  光热协同  原位红外光谱  NO氧化  MnOx  g-C3N4  Synergistic  catalysis  Photo-thermal  In  situ  DRIFTS  NO  oxidation
收稿时间:22 December 2017

Synergistic photo-thermal catalytic NO purification of MnOx/g-C3N4:Enhanced performance and reaction mechanism
Peng Chen,Fan Dong,Maoxi Ran,Jiarui Li.Synergistic photo-thermal catalytic NO purification of MnOx/g-C3N4:Enhanced performance and reaction mechanism[J].Chinese Journal of Catalysis,2018,39(4):619-629.
Authors:Peng Chen  Fan Dong  Maoxi Ran  Jiarui Li
Institution:Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
Abstract:Both MnOxand g-C3N4have been proved to be active in the catalytic oxidation of NO, and their indi-vidual mechanisms for catalytic NO conversion have also been investigated. However, the mecha-nism of photo-thermal catalysis of the MnOx/g-C3N4composite remains unresolved. In this paper, MnOx/g-C3N4catalysts with different molar ratios were synthesized by the precipitation approach at room temperature. The as-prepared catalysts exhibit excellent synergistic photo-thermal catalytic performance towards the purification of NO in air. The MnOx/g-C3N4catalysts contain MnOxwith different valence states on the surface of g-C3N4. The thermal catalytic reaction for NO oxidation on MnOxand the photo-thermal catalytic reaction on 1:5 MnO x/g-C3N4were investigated by in situ diffuse reflectance infrared Fourier transform spectroscopy(in situ DRIFTS).The results show that light exerted a weak effect on NO oxidation over MnOx, and it exerted a positive synergistic effect on NO conversion over 1:5 MnOx/g-C3N4. A synergistic photo-thermal catalytic cycle of NO oxidation on MnOx/g-C3N4is proposed. Specifically, photo-generated electrons (e-) are transferred to MnOxand participate in the synergistic photo-thermal reduction cycle (Mn4+→Mn3+→Mn2+). The reverse cycle (Mn2+→Mn3+→Mn4+) can regenerate the active oxygen vacancy sites and inject electrons into the g-C3N4hole (h+). The active oxygen (O-) was generated in the redox cycles among manganese spe-cies (Mn4+/Mn3+/Mn2+) and could oxidize the intermediates (NOH and N2O2-) to final products (NO2-and NO3-). This paper can provide insightful guidance for the development of better catalysts for NOxpurification.
Keywords:Synergistic catalysis  Photo-thermal  NO oxidation
本文献已被 万方数据 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号