首页
|
本学科首页
官方微博
|
高级检索
全部学科
医药、卫生
生物科学
工业技术
交通运输
航空、航天
环境科学、安全科学
自然科学总论
数理科学和化学
天文学、地球科学
农业科学
哲学、宗教
社会科学总论
政治、法律
军事
经济
历史、地理
语言、文字
文学
艺术
文化、科学、教育、体育
马列毛邓
全部专业
中文标题
英文标题
中文关键词
英文关键词
中文摘要
英文摘要
作者中文名
作者英文名
单位中文名
单位英文名
基金中文名
基金英文名
杂志中文名
杂志英文名
栏目中文名
栏目英文名
DOI
责任编辑
分类号
杂志ISSN号
粒子群算法结合支持向量机回归法用于近红外光谱建模
作者姓名:
程志颖
孔浩辉
张俊
柏文良
甘峰
作者单位:
1.中国烟草广东工业有限公司技术中心;2.中山大学化学与化学工程学院
基金项目:
国家自然科学基金资助项目,广东省自然科学基金资助项目,中国烟草广东工业有限公司资助项目
摘 要:
研究了最小二乘法支持向量机(LSSVM)应用于烟丝样品和小麦样品的近红外光谱建模,采用粒子群优化算法(PSO)优化LSSVM的参数。通过对烟草样品和小麦样品的近红外光谱建模和预测,并与常规的偏最小二乘法(PLS)比较发现,PSO-LSSVM法具有更好的预测效果和稳健性。
关 键 词:
最小二乘法支持向量机
粒子群优化算法
烟草
小麦
近红外光谱
本文献已被
CNKI
万方数据
等数据库收录!
点击此处可从《分析测试学报》浏览原始摘要信息
点击此处可从《分析测试学报》下载全文
设为首页
|
免责声明
|
关于勤云
|
加入收藏
Copyright
©
北京勤云科技发展有限公司
京ICP备09084417号