New answer to the solar neutrino problem |
| |
Authors: | Marc Dixmier |
| |
Affiliation: | (1) 15 rue Le Brun, 75013 Paris, France |
| |
Abstract: | We suggest a new answer to the problem of the solar neutrinos: a neutrino-photon interaction that would cause the neutrinos to disappear before they leave the sun or make them lose energy towards detection thresholds. We calculate the available energy in the system of the centre of mass, and show that the photons may be endowed with a pseudo-cross-section in the system of the sun. Under the assumption of an absorption, made to simplify the neutrino transport calculation, the chlorine experiment yields:σ a =1.8( −1.0 +0.7 )*10−9 barn, which is close tog β/(ℏc)=4·49*10−9 barn. The escape probability is substantially larger for the gallium neutrinos than for the chlorine neutrinos. Thermal radiation in the core of a supernova is suppressed by electrical conductivity, therefore the neutrinos from SN1987A could escape; they interacted with the photon piston in the outer layers of the supernova and the interaction has to be a scattering. The cosmological implications of a neutrino-photon interaction are discussed; Hubble’s constant may have to be modified. The case of an elastic scattering between neutrino and photon is discussed in more detail. An erratum to this article is available at . |
| |
Keywords: | Solar neutrino neutrino-photon interactions supernova cosmology |
本文献已被 SpringerLink 等数据库收录! |
|