首页 | 本学科首页   官方微博 | 高级检索  
     


Competitive on-line coverage of grid environments by a mobile robot
Authors:Yoav Gabriely  Elon Rimon  
Affiliation:

Technion, Israel Institute of Technology, Department of Mechanical Engineering, Haifa 32000, Israel

Abstract:
We describe in this paper two on-line algorithms for covering planar areas by a square-shaped tool attached to a mobile robot. Let D be the tool size. The algorithms, called Spanning Tree Covering (STC) algorithms, incrementally subdivide the planar area into a grid of D-size cells, while following a spanning tree of a grid graph whose nodes are 2D-size cells. The two STC algorithms cover general planar grids. The first, Spiral-STC, employs uniform weights on the grid-graph edges and generates spiral-like covering patterns. The second, Scan-STC, assigns lower weights to edges aligned with a particular direction and generates scan-like covering patterns along this direction. Both algorithms cover any planar grid using a path whose length is at most (n+m)D, where n is the total number of D-size cells and mn is the number of boundary cells, defined as cells that share at least one point with the grid boundary. We also demonstrate that any on-line coverage algorithm generates a covering path whose length is at least (2−)lopt in worst case, where lopt is the length of the optimal off-line covering path. Since (n+m)D2lopt, the bound is tight and the STC algorithms are worst-case optimal. Moreover, in practical environments mn, and the STC algorithms generate close-to-optimal covering paths in such environments.
Keywords:Mobile robot covering   Competitive covering   Sensor based covering   On-line spanning tree construction
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号