首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Bifurcation and Stability Theory of Periodic Solutions For Integrodifferential Equations
Authors:Kerry A Landman
Abstract:This paper is concerned with a nonlinear integrodifferential equation (the delay logistic equation) governing the growth dynamics of a single species N(t) for time t > 0. This equation contains a positive parameter λ. Suppose that there exists a positive equilibrium solution N = c which is stable for all small values of λ. Assume also that this solution loses stability as λ is increased past a critical value λ*. This will correspond to a simple pure imaginary conjugate pair of roots of a characteristic equation associated with the linearized stability of N = c at λ = λ*. Then we will construct a unique bifurcating time periodic solution of the equation as a Taylor series in a parameter ε. Furthermore this solution exists either for supercritical values of the parameter (λ > λ*) or for subcritical values (λ < λ*). The stability behavior of this small periodic solution can be characterized according to whether the bifurcation is supercritical or subcritical-supercritical solutions are stable, but subcritical solutions are unstable. Therefore these results are analogous to Hoprs bifurcation theorem for autonomous systems of differential equations.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号