首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Non-local continuum modeling of carbon nanotubes: Physical interpretation of non-local kernels using atomistic simulations
Authors:Veera Sundararaghavan  Anthony Waas
Institution:Department of Aerospace Engineering, University of Michigan, Ann Arbor MI 48109, United States
Abstract:The longitudinal, transverse and torsional wave dispersion curves in single walled carbon nanotubes (SWCNT) are used to estimate the non-local kernel for use in continuum elasticity models of nanotubes. The dispersion data for an armchair (10,10) SWCNT was obtained using lattice dynamics of SWNTs while accounting for the helical symmetry of the tubes. In our approach, the Fourier transformed kernel of non-local linear elastic theory is directly estimated by matching the atomistic data to the dispersion curves predicted from non-local 1D rod theory and axisymmetric shell theory. We found that gradient models incur significant errors in both the phase and group velocity when compared to the atomistic model. Complementing these studies, we have also performed detailed tests on the effect of length of the nanotube on the axial and shear moduli to gain a better physical insight on the nature of the true non-local kernel. We note that unlike the kernel from gradient theory, the numerically fitted kernel becomes negative at larger distances from the reference point. We postulate and confirm that the fitted kernel changes sign close to the inflection point of the interatomic potential. The numerically computed kernels obtained from this study will aid in the development of improved and efficient continuum models for predicting the mechanical response of CNTs.
Keywords:Carbon nanotubes  Phonon dispersion  Wave propagation  Non-local elasticity  Shell theory
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号