首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Billiards and Two-Dimensional Problems of Optimal Resistance
Authors:Alexander Plakhov
Institution:1.Institute of Mathematical and Physical Sciences,Aberystwyth University,Aberystwyth,UK
Abstract:A body moves in a medium composed of noninteracting point particles; the interaction of the particles with the body is completely elastic. The problem is: find the body’s shape that minimizes or maximizes resistance of the medium to its motion. This is the general setting of the optimal resistance problem going back to Newton. Here, we restrict ourselves to the two-dimensional problems for rotating (generally non-convex) bodies. The main results of the paper are the following. First, to any compact connected set with piecewise smooth boundary B ì \mathbbR2{B \subset \mathbb{R}^2} we assign a measure ν B on ∂(conv B)× − π/2, π/2] generated by the billiard in \mathbbR2 \B{\mathbb{R}^2 \setminus B} and characterize the set of measures {ν B }. Second, using this characterization, we solve various problems of minimal and maximal resistance of rotating bodies by reducing them to special Monge–Kantorovich problems.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号