首页 | 本学科首页   官方微博 | 高级检索  
     


Proton radiation effects of conjugated polymer thin films
Authors:Harold O. Lee III  Muhammad Hasib
Affiliation:Center for Materials Research, PhD Program in Materials Science and Engineering, Norfolk State University, Norfolk, VA, USA
Abstract:Polymeric-thin-film-based electronic and optoelectronic materials and devices are attractive for potential space and certain radiation-related applications due to their inherent features such as lightweight, flexible, biocompatible, etc. Proton radiation is a major form of ionizing radiation in space, particularly in the so-called inner Van Allen belt region where most near-earth satellites are orbiting, yet very few literature and data are available on proton radiation effects on conjugated polymer systems. In this report, the proton radiation effects on potential electronic/optoelectronic properties of several conjugated polymers and their composites are briefly evaluated. Specifically, UV–VIS absorption spectra of several conjugated polymers and/or their composite thin films were measured and compared right before and after the proton radiations at different dosages. The results revealed that proton radiation has very little or insignificant impact up to 800?rad on the optoelectronic properties of poly-3-hexyl-thiophene (P3HT), P3HT:PC60BM blend, a light harvesting donor-bridge-acceptor (DBA) and a novel donor-bridge-fluorinated-acceptor (DBfA)-type block copolymer thin films.
Keywords:Materials testing  materials stability  proton radiation  conjugated polymer  space applications  optoelectronic properties
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号