首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Enzymatic hydrolysis of cellulose I is greatly accelerated via its conversion to the cellulose II hydrate form
Authors:Masahisa Wada  Masakazu Ike
Institution:a Department of Biomaterials Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113 8657, Japan
b Food Resource Division, National Food Research Institute, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba, Ibaraki 305 8642, Japan
Abstract:Cellulose II hydrate was prepared from microcrystalline cellulose (cellulose I) via its mercerization with 5 N NaOH solution over 1 h at room temperature followed by washing with water. The structure of cellulose II hydrate changed to that of cellulose II after drying. Compared with cellulose II, cellulose II hydrate exhibited a slightly (8.5%) expanded structure only along the View the MathML source direction. The hydrophobic stacking sheets of the cellulose II were conserved in the cellulose II hydrate, and water molecules could be incorporated in the inflated two-chain unit cell of cellulose II hydrate. Enzymatic hydrolysis of cellulose I, cellulose II hydrate, and cellulose II was carried out at 37 °C using solutions comprising a mixture of cellulase and β-glucosidase. The hydrolysis of cellulose II hydrate proceeded much faster than the hydrolysis of the other two substrates, while the saccharification ratio of cellulose II was only slightly higher than that of cellulose I. The alkaline mercerization treatment was also applied to sugarcane bagasse. After its direct mercerization, the cellulose in bagasse was converted from cellulose I to cellulose II hydrate, and then to cellulose II after drying. Similar to in the case of microcrystalline cellulose, the rate of the enzymatic hydrolysis of the mercerized bagasse without drying (cellulose II hydrate) was much faster than the enzymatic hydrolysis of the other two substrates. Thus, the wet forms of cellulose and cellulosic biomass after mercerization, and after hydrolysis with cellulolytic enzymes, afforded superior products with extremely high degradability.
Keywords:Cellulose II hydrate  Bagasse  Alkaline mercerization  X-ray diffractometry  Enzymatic hydrolysis
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号