Abstract: | ![]() The morphology and optical properties of polymer stabilized liquid crystals formed in a more highly ordered low molecular weight liquid crystal solvent were studied. Tetrafunctional, mesogenic monomers (with and without flexible spacers) were polymerized in isotropic, nematic and smectic phases of the LC solvent (4′-octyl-4-cyanobiphenyl) and studied with scanning electron microscopy and cross-polarized light microscopy. The network morphology of the nematic and isotropic phase polymerizations showed strong similarities with the corresponding polymerizations in other solvents. Polymerization in the smectic phase, however, resulted in marked increases in network order and directionality. Most dramatically, even the polymer without flexible spacer formed a fibrous network of rodlike units, in contrast to the random, beaded texture formed by the same polymer in nematic or isotropic conditions. Correspondingly, a large increase in birefringence demonstrated significant polymer orientation and more effective orientational interaction with the liquid crystalline solvent. |