Abstract: | An ethylene-hexene copolymer was fractionated into five fractions and the density of short-chain branches was measured for each fraction. The slow crack growth behavior was measured on each fraction by sandwiching the small amount of fractionated resin of about 0.2 g between polyethylene grips. The resistance to slow crack growth was negligible for the three fractions whose Mw was less than 1.5 × 105. For the fourth fraction with Mw greater than 1.5 × 105, the resistance to slow crack growth was very high, being greater than that for the whole resin even though its density of short-chain branches was less than that of the whole resin. It is concluded that a molecular weight greater than 1.5 × 105 is required to create the number of tie molecules that is necessary to produce a high resistance to slow crack growth in this particular copolymer. © 1996 John Wiley & Sons, Inc. |