首页 | 本学科首页   官方微博 | 高级检索  
     


Bayesian prediction based on a class of shrinkage priors for location-scale models
Authors:Fumiyasu Komaki
Affiliation:(1) Department of Mathematical Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
Abstract:
A class of shrinkage priors for multivariate location-scale models is introduced. We consider Bayesian predictive densities for location-scale models and evaluate performance of them using the Kullback–Leibler divergence. We show that Bayesian predictive densities based on priors in the introduced class asymptotically dominate the best invariant predictive density.
Keywords:Asymptotic theory  Jeffreys prior  Neyman–  Scott model  Right invariant prior  Kullback–  Leibler divergence
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号